Лампы для парников и теплиц

Электрификация теплицы

Шаг 1. Для начала нужно расчертить подробный план с указанием мест расположения источников света, выключателей и путей прокладки проводов.


Как правильно размещать освещение для растений


На этой схеме освещения теплицы показаны сетевые розетки на обоих торцах, четыре газоразрядные лампы высокой интенсивности (ГЛВИ) над зонами выращивания растений, люминесцентные светильники над проходом для общего освещения и розетки для обогревающих матов и электроинструментов

Шаг 2. Рассчитывается необходимый метраж проводов, число распределительных коробок, ламп, выключателей и вспомогательных материалов.


Таблица рекомендуемой мощности освещения относительно площади теплицы

Шаг 3. Закупается все необходимое (с небольшим запасом). Все элементы обязательно должны быть влагостойкими.

Шаг 4. Выводится провод от распределительного щитка, находящегося в здании. Автоматический тепличный выключатель монтируется в общем счетчике жилого дома.


Распределительный щиток

Шаг 5. Проводится электропроводка к теплице.


Пример схемы электрических цепей в теплице

Способ А — под землей:

  • роется траншея минимум 80 см глубиной, она не должна пересекаться с дренажом;
  • провод с защитным экраном нужно прикрыть черепицей, чтобы в дальнейшем оградить его при перекопке земли.


Схема подземной прокладки кабеля


Укладка электрического кабеля в траншею

Способ Б — по воздуху:

  • устанавливаются столбы;
  • на безопасной высоте кабель привязывается к проволоке, соединяющей два столба.


Подведение кабеля по воздуху

Электропроводка обязательно должна находиться в стороне от деревьев, которые при сильном ветре могут ветвями оборвать кабель.


Нюансы прокладки электрической проводки в теплице

Шаг 6. Кабель подсоединяется к щитку внутри теплицы.

Шаг 7. Провода в специальной гофре разводятся к розеткам и выключателям. Изолируются все крепежи и клеммники.


Подключение провода в гофре к розетке


Соединение проводов винтовым клеммником


Зажим ВАГО для соединения проводов


Колпачок СИЗ для соединения одножильных проводов

Теплица с отоплением и освещением: что лучше установить

Для выращивания растений, в теплице необходимо поддерживать свой микроклимат. Для этого нужно позаботиться об освещении и отоплении.

Известно, что для рассады важным является температура почвы. Для этого специалисты придумали прокладывать в почве шланги или трубы, по которым будет циркулировать горячая вода. Таким способом достигается не только подогрев почвы, но и оптимальное распределение тепла по всей необходимой площади тепличной конструкции. Трубы с горячей водой можно пустить частично снаружи, чтобы и воздух в помещении тоже был теплым.

Существует еще один способ подогрева почвы – это установка инфракрасных обогревателей. Инфракрасная система обогрева работает, как солнце. Такие обогреватели не сушат воздух и даже не нагревают его. Данный тип обогрева считается одним из самых экономных.

Искусственное освещение также очень необходимо для тепличных растений. Особенно зимой, когда солнца недостаточно для продуктивного роста овощей и зелени.

Освещение для теплиц должно дополнять или полностью заменять солнечный свет, давая при этом необходимые для фотосинтеза растений световые лучи. Нужно следить за необходимым количеством выделяемого света, в зависимости от того, что выращивается, на какой стадии роста находится растение и учитывать сезонность.

Оптимальным вариантом будет установка специальных светильников с ЛЕД-лампами. Они обладают лучами сбалансированной концентрации и только полезных спектров. Это достигается за счет специальных фитодиодов, которые к тому же еще будут экономить электроэнергию.

Искусственное освещение

Благодаря техническому прогрессу, современные огородники обеспечивают тепличные растения светом и ночью, и зимой, при этом искусственное освещение:

  • улучшает рост растений (выращивание исключительно естественным светом значительно снижает продуктивность);
  • позволяет получить продукцию за более короткие сроки и в то время, когда спрос на нее наиболее высок;
  • помогает выращивать теплолюбивые культуры, не встречающиеся в местном климате;
  • снижает конечную себестоимость овощей на 15% путем повышения урожайности.


Искусственное освещение теплицы

Виды световых режимов для теплицы

  1. Световой поток идет в строго требуемом для растения количестве. Плотность световой энергии колеблется в диапазоне 400-1000 ммоль/м2. Освещение можно сделать непрерывным, если использовать специальные реле, автоматически включающие светильники при снижении интенсивности солнечного света.
  2. Ночное освещение требуется, когда искусственно продлевают световой день. Энергетическая плотность снижается до 5-10 ммоль/м2. Лампы включают лишь время от времени. При подобном подходе можно либо притормозить, либо ускорить время цветения. Ускорение роста достигается частым включением слабого цвета через каждые полчаса. За время выключения освещения растения не успевают «заснуть» и растут так же, как при постоянном свете. С этой задачей справятся лампы накаливания с рефлектором.


Лампа накаливания рефлекторная зеркальная

Если ни один из режимов не соблюдается, качественной продукции ждать не приходится. Овощи будут цвести без плодоношения, а у вегетативных растений не дойдет и до цветения.

Технология электрофикации теплицы

На начальном проводятся такие работы:

  • Расчет освещения для теплицы и определение количества приборов;
  • Разработка схем размещения светильников и разводки проводов;
  • Определение сечения питающих проводов, подбор предохранителей;
  • Крепление в соответствии с разработанной схемой ламп, распределительных коробок, электрощитка.

Если вы выполняете монтаж освещения теплицы своими руками, обратите внимание на последовательность работ:

  1. Проведите основной кабель к помещению. Его можно закопать на глубину 80 см или подвесить. Контролируйте, чтобы трасса не пересекалась с дренажной системой. В случае подземного размещения используйте провод с защитной изоляцией. Также рекомендуется применять кабель с заземлением. После укладки накройте провод черепицей, чтобы избежать повреждения при земельных работах.
  2. В случае подвешивания натяните его и закрепите проволокой к столбам. Трассу выбирайте такой, чтобы рядом не росли деревья.
  3. Сечение провода выбирайте с 20-процентным запасом. Не покупайте изделие впритык, при включении всегда будет кратковременное увеличение тока.
  4. Разводку начинайте после подключения провода к щитку. Обязательно наличие рубильника, который быстро обесточит помещение.
  5. Не забывайте, что в теплице часто бывает повышенная влажность, поэтому все приборы должны быть влагостойкими.
  6. Очень тщательно соединяйте отдельные части кабеля. Лучше всего использовать специальные клемники.
  7. После монтажа всей системы включите лампы и проконтролируйте световой поток. Положите руку возле растения. Если почувствуете тепло, прибор висит слишком близко к растению. Также можно воспользоваться люксомером.
  8. Проверить необходимость подсветки можно, если измерить освещенность до и после включения электросистемы. Если значения не изменились, досвечивания в данный момент не требуется.

Виды ламп

  • Меньше всего для этой цели подходят лампы накаливания. Свет, который излучают данные приборы в основном находится в красно-жёлтом спектре, что препятствует образованию процесса фотосинтеза.Для досвечивания применяются люминесцентные, ртутные, натриевые, светодиодные приборы достаточной мощности, чтобы растения не испытывали недостатка в свете.
  • Люминесцентные – данный вид светильников для освещения в условиях защищённого грунта, характеризуется высокой экономичностью. Такие лампы обладают светоотдачей порядка 80 Лм./В, излучают спектр света, близкий к естественному, не нарушают микроклимат теплицы. Кроме положительных качеств, такие осветительные приборы имеют ограничение на применение в теплицах для выращивания влаголюбивых культур. Максимальная влажность воздуха, при которой возможно применение люминесцентных ламп, составляет 70%.
  • Ртутные – эти светильники излучают спектр света, который используется растениями в период формирования плодов.Запрещается данными приборами досвечивать рассаду, по причине чрезмерного вытягивания растений. Ртутные лампы небезопасны для здоровья человека. При использовании таких приборов, необходимо следить за целостностью стеклянной колбы, в которой находятся пары ртути. Находиться человеку рядом с таким осветительным прибором долгое время не рекомендуется из-за высокой степени ультрафиолетового излучения.
  • Натриевые обладают высокой долговечностью. Даже в неблагоприятных для электротехнических приборов условиях, эти светильники могут прослужить не менее 12 000 часов. Натриевые лампы излучают красный спектр света, что особенно полезно для растений в период плодообразования и цветения. Натриевые приборы являются экономичными, светоотдача этих устройств в несколько раз выше, чем у ламп накаливания.К недостаткам этих осветительных устройств относится их ограниченный красно-оранжевый спектр, который на ранних периодах развития растений приводит к чрезмерному их вытягиванию. Натриевые приборы небезопасны. Если разбить лампу, то воздух будет загрязнён парами ядовитых металлов. Ещё одним недостатком такого освещения является высокий нагрев работающего прибора, но в том случае если лампы расположены высоко над растениями, а досвечивание осуществляется в зимнее время, то этот недостаток превращается в достоинство, дополнительно обогревая воздух теплицы.

  • Металлогалогеновые – эти осветительные устройства являются противоположностью натриевых ламп по излучаемому спектру. Металлогалогеновые приборы излучают свет в синем спектре, что особенно полезно растениям на ранней стадии развития. Эти осветительные устройства довольно дороги и не могут применяться в течение всего вегетационного периода развития овощей. При использовании металлогалогеновых ламп запрещается использовать технологии полива, при которых возможно попадание воды на работающие осветительные приборы.
  • Светодиодные являются самыми экономичными светильниками для освещения овощей. Срок эксплуатации таких устройств составляет до 50 000 часов. Достоинством таких прибором является возможность работать от низковольтного блока питания, что в условиях повышенной влажности теплице является наиболее безопасным вариантом освещения. Существенным недостатков светодиодных светильников, является их высокая стоимость, но учитывая очень большой срок службы таких приборов, финансовые вложения окупаются очень скоро.
  • Инфракрасные – такие устройства излучают тепловую энергию, поэтому применяются в теплице с целью создания благоприятного микроклимата для выращивания растений. Инфракрасные лампы нагревают, прежде всего, грунт и материал теплицы, которые затем отдают тепло воздух. Обогрев растений также происходит напрямую от инфракрасных приборов.Существенный недостаток таких устройств, это высокая стоимость и спектр излучения, который можно использовать только для подогрева, для освещения теплицы инфракрасные приборы не применяются. 

Газовые, масляные и примитивные виды обогревателей

Чтобы правильно подобрать обогреватель для теплицы, нужно сразу определить, что именно будет в ней выращиваться, какой размер теплицы, ее теплопроводность, в каком сезоне будет производиться обогрев.

Если в парнике подмерзает рассада, то может быть достаточно установить несколько зажженных свечей. Другое дело, теплица 2,5 метра высотой и площадью от 20 кв.м. Для такой теплицы необходимы совсем другие габариты обогревателя. Без подогрева теплицы может выдержать температуру до -1 градуса, а ниже уже необходим дополнительный подогрев. С этой целью можно использовать тепловентиляторы оснащенные таймером, в которых можно специально регулировать длительность и мощность работы, а также автоматическое отключение.

Достоинством тепловентиляторов является его способность быстро обогревать воздух, а недостатком – неравномерность подаваемого тепла и пересушка нагретого воздуха.

Самым худшим из всех обогревателей для теплиц является газовый обогреватель. Он состоит из газопровода и регулирующей системы подачи газа. Теплогенератор подогревает воздух и передает его в теплицу. Недостатком этого обогревателя тоже является пересушивание воздуха в теплице, губительное для растений.

Иногда в теплицах используют масляные обогреватели, что очень нерационально. Они съедают слишком много электроэнергии, что при длительном использовании не окупится никакими урожаями. К тому же, такие обогреватели занимают слишком много площади, и не защищены от воздействия конденсата.

Это касается всех электрообогревателей, подключаемых к сети. Малейшее замыкание – и пожара не избежать. Если в теплице выпала роса, то она осядет на все поверхности, в том числе и на розетку. Если капля попадет на линию тока, может произойти замыкание. Это хорошо, если сработает предохранитель. В худшем случае, розетка может загореться, когда хозяев нет дома

Поэтому нужно соблюдать все предосторожности, чтобы этого не произошло. Розетка должна быть за пределами теплицы, лучше всего в доме, она должна быть герметична, чтобы на нее не могла попасть вода. Обогреватель нельзя оставлять включенным, если на даче долгое время никого не будет

Для обогревателя неплохо было бы установить автомат защиты с небольшим запасом мощности, чтобы в случае замыкания он отключил напряжение. Для обогревателя мощностью 500 Ватт необходим автомат на 3 ампера, который сможет сработать при утечке тока 0,03 ампера

Обогреватель нельзя оставлять включенным, если на даче долгое время никого не будет. Для обогревателя неплохо было бы установить автомат защиты с небольшим запасом мощности, чтобы в случае замыкания он отключил напряжение. Для обогревателя мощностью 500 Ватт необходим автомат на 3 ампера, который сможет сработать при утечке тока 0,03 ампера.

Обогреватель из аккумулятора

Самым лучшим вариантом обогрева теплицы является автономный обогреватель, имеющий собственный источник энергии, не зависящий от внешних факторов, таких как перепады в сети или отключение электричества. Его можно соорудить своими руками, переделав из автомобильного аккумулятора, присоединив к нему тлеющий торф.

Автомобильный аккумулятор имеет 55А/ч, и на всю теплицу необходимо, по меньшей мере, 500 Вт. Потому опытные огородники придумали использовать аккумулятор в импульсном режиме, который действует следующим образом: с помощью часового механизма включается прожиг, спираль сгорает и происходит разрыв контакта, после чего поджигается трут в торфе. Через некоторое время подключается следующая спираль. Такой режим экономит заряд аккумулятора, которого хватит на целую неделю и даже больше.

Самопал

Самым простым и примитивным способом обогрева теплицы является «самопал». Он работает следующим образом: в печке сжигается мусор, в котором греется два кирпича и ведро воды. Вечером в теплице на деревянную подставку устанавливается ведро воды, а на лист железа – горячие кирпичи.

Некоторые дачники используют свечи, которые устанавливаются посреди теплицы вдоль дорожки и поджигаются. Это малоэффективный способ обогрева, но смотрится очень красиво.

Расчет мощности светильников


При разработке проекта устройства освещения теплицы главным вопросом считается определение числа осветительных ламп. Для этого понадобятся следующие данные:

  • Высота светильника над вершиной растения;
  • Тип изделий и их мощность;
  • Какую преимущественную интенсивность требует выращиваемая культура;
  • Рабочая площадь строения;
  • В какую пору года планируется выращивать культуру.

Все растения можно поделить на несколько групп, которые отличаются различными требованиями к освещению:

  1. Яркий свет создают для растений, которые в естественных условиях растут на открытой местности — для роз, пальм, гибискуса и т.д. Для них необходим высокий уровень — 15-20 тыс. Люкс.
  2. Умеренный свет создают для рассады, желаемый диапазон освещенности которой находится в пределах 10-20 тыс. Люкс.
  3. Полутемное состояние (5-10 Люкс) можно организовать для растений, способных расти в сумерках.

Допустимую степень освещения для каждого растения можно узнать в агрономических справочниках. Минимальная величина для зеленых насаждений — 6-7 кЛк, ее вполне можно достичь лампами удельной мощностью 50-100 Вт/м2. Исходя из требований конкретной культуры, определяется количество приборов. Расчеты можно выполнить самостоятельно.

Для этого воспользуемся формулой:

F = E * S : Kи, где:

E — допустимый уровень освещенности для растения; F — световой поток для конкретного растения; S — площадь освещаемого участка; Ки — коэффициент, определяющий различия между лампами с внешним отражателем и встроенным (в первом случае он равен 0,4, во втором — 08).

Определим световой поток для участка 18 м2 для растений, требующих 10000 люкс:

F = 10000 * 12 : 0,4 = 300000 люмпен

Рассчитаем, сколько необходимо натриевых ламп ДНаТ мощностью 250 Вт (27000 люмпен), которые обеспечат такой световой поток:

300000 : 27000 = 11-12 штук

Далее рассмотрим, на какой высоте необходимо расположить приборы. Точное размещение можно определить с помощью люксметра, но можно воспользоваться справочными данными:

  • Над одним ростком можно подвесить образец мощностью 20-30 Вт на высоте 50-300 мм.
  • Для группы достаточно прибора 50-100 Вт, расположенного на высоте 400-600 мм над самым верхним листком.
  • Над большими участками подвешивают лампы 250 Вт на высоте 1000-2000 мм. Они устанавливаются в зимних теплицах.

Для усиления полезного светового потока часто применяют рефлектор. Он направляет свет на рассаду и концентрирует его, значительно увеличивая освещенность. Такие устройства рекомендуется применять при использовании маломощных ламп, например, люминисцентных. Неправильный расчет может привести к ожогу или перегреву растения и даже к его гибели, поэтому изделия необходимо размещать на таком расстоянии от культуры, чтобы не нанести ей вред. При этом необходимо учитывать уменьшение освещенности при увеличении расстояния до объекта.

Существует формула, по которой можно определить величину этого параметра в зависимости от расстояния между прибором и растением: освещение = 1/2 расстояния между ними.

По этой формуле при увеличении расстояния вдвое уровень световой энергии не меняется пропорционально, поэтому для расчета необходимо использовать специальные таблицы. Также по специальным таблицам можно сразу определить, какую площадь освещают лампы определенного типа, расположенные на рекомендуемой высоте.

Для повышения эффекта можно использовать рефлекторы. Они отражают свет по-разному в зависимости от покрытия. Коэффициент отражения алюминиевого изделия достигает 80%, зеркального — 90%. Чтобы получить желаемый результат, необходимо правильно повернуть рефлекторы, чтобы свет попадал точно на растения.

Большое количество ламп не всегда положительно сказываются на росте рассады. Они повышают температуру в строении, и растения погибают. Другая неприятность — перегрев прибора, что выводит его из строя. Кроме того, увеличивается расход электроэнергии. Поэтому вместо увеличения количества ламп выгоднее использовать отражатели, которые не перегревают воздух в помещении.

Для чего освещение?

При невысоком уровне освещения, будь то недостаток дневного света или низкое качество искусственного освещения, даже тенелюбивые растения начнут чахнуть, что приведет к их неминуемой гибели.

Живая природа устроена по главному процессу выживания и развития и этот процесс называется — фотосинтез.

Вырабатывая хлорофилл растения способны усваивать углекислоту, но возможно это только при солнечном свете, чего не происходит в темное время суток.

Недостаточное потребление солнечного света способно лишить культуру нормального развития:

  • изменение формы и активности роста;
  • исключение плодоношения (растение попросту не зацветет, а соответственно не будет завязей);
  • неестественное удлинение черенков и стеблей.

Поддержать нормальную репродуктивность плодовоовощных культур в парниках, теплицах и оранжереях, а также избежать неприятностей связанных с недостатком солнечного света поможет искусственное освещение. Лампы для растений в теплице способны ничуть не хуже заменить природное освещение в теплице зимой.

Подбор источника света

Кроме выбора самого светильника, необходимо подобрать под него источник света. На сегодняшний день для подсветки парников зимой могут использоваться следующие источники света:

лампы накаливания. Самый устаревший тип источника света, который используется разве что по привычке. Несмотря на то, что они еще продаются, их эпоха подошла к своему логическому завершению. Это связано с тем, что лампы накаливания имеют низкий коэффициент полезного действия и низкую энергоэффективность;

Подсветка теплиц лампами накаливания

ртутные лампы. Они показали себя более эффективными, чем лампы накаливания, которые были их прототипами. Ртутные лампы излучают подходящий для растений спектр и имеют доступную стоимость. Но к их минусам следует отнести наличие внутри стеклянной колбы паров ртути, которые при ее повреждении попадают в воздух. А это несет угрозу жизни людей и полезности выращиваемых в парнике плодов. Также такие источники света излучают определенную долю ультрафиолета;

Подсветка теплиц ртутными лампами

натриевые лампы. Они более безопасны, по сравнению с ртутными лампочками, так как бьются значительно реже. Такие лампочки выбирают для подсветки цветущих культур, так как в их спектре излучения преобладают красные лучи. В результате свет натриевых ламп стимулирует формирование завязей и крупных плодов. К минусам ламп стоит отнести их высокую стоимость;

Подсветка теплиц натриевыми лампами

галогенные лампы. Применяются в теплицах не очень часто, так как их установка достаточно сложна и дорогостояща. При этом продолжительность службы лампочки низкая и они боятся влаги (при попадании воды могут взорваться). К достоинствам галогеновых ламп относят высокую светоотдачу, а также возможность экономить на отоплении теплицы зимой. Размещать такие лампы над посадками нужно на расстоянии 30-90 см от кустов;

Подсветка теплиц галогеновыми лампами

люминесцентные лампы. Они применяются для освещения теплиц очень часто. Такие лампочки стоят не дорого, особо не нагреваются и имеют продолжительный срок службы. Но значительным минусом таких изделий является низкая светоотдача. Также для их установки потребуются дополнительные конструкции, довольно проблематично собираемые своими руками;

Подсветка теплиц люминесцентными лампами

Самым оптимальным решением в данной ситуации будет использование светодиодного светильника. Такие лампочки являются наиболее выгодными в плане потребления электроэнергии. При этом светодиодные лампы имеются все необходимые для роста и развития растений характеристики.

Подсветка теплиц светодиодными лампами

Но покупка led-продукции будет не из дешевых. Зато вы точно получите качественный и вкусный урожай с зимней теплицы. И напоследок стоит отметить, что добиться дополнительной экономии света при подсветке теплиц зимой поможет автоматизация системы освещения.

Лампы для теплиц

Подробнее следует остановиться на лампах, которые присутствуют в продаже в большом количестве. Здесь можно дать лишь характеристику существующих приборов, выбирает каждый в отдельности и руководствуется тем, что наиболее приемлемо в каждом отдельном случае.

Лампы накаливания

Данные лампы,довольно неплохо освещают теплицу, но и еще подогревают воздух. У них довольно высокое потребление энергии и имеют световой спектр порядка 600-т номиналов. Это не сильно благоприятно для растений, но и не критично.

  • Они много излучают оранжевого, красного и инфракрасного излучения. При длительной работе такого освещения стебли выращиваемых растений сильно удлиняются, деформируется листва. Побеги могут перегреться или получить ожог.
  • Освещенность рассады в теплице с применением таких ламп не допускается. Так же не следует выращивать огурцы и помидоры;
  • Освещение для парников с применением таких ламп прекрасно подойдет для лука, петрушки и многих других зеленых культур. Саму лампу в этом случае следует закреплять на расстоянии 50-ти см от растения. Досвечивание должно проводиться от 6 до 18 часов (это без наличия естественного освещения).

Ртутная лампа высокого давления

Лампы такого типа довольно быстро нагреваются, но это не самый большой их недостаток. Они обладают довольно большим излучением ультрафиолетовых лучей при ближнем спектре распространения.


Внешний вид ртутной лампы высокого давления

Люминесцентные лампы экономные

В целом эти лампы довольно благоприятны для теплиц. Они отличаются большой долговечностью, невысокой стоимостью, но обладают не большой теплоотдачей. По такому принципу работают и лампы для теплиц, но они смогут осветить значительно меньшую площадь.


Образцы люминесцентных ламп

Монтаж таких ламп производится либо в горизонтальном положении при помощи прямоугольной арматуры, либо в вертикальном варианте с применением специальных корпусов.

Лампы натриевые высокого давления

Это достаточно экономный вариант освещения. Они обладают высокой светоотдачей уже при мощности в 400 Вт. При освещении теплицы создается монохроматическое световое поле, которое имеет желто-оранжевый свет.

Прекрасно имитирует естественное солнечное освещение. Но они слабы в синей части спектра, который важен для вегетативного роста посаженных растений.

Металлогалогенные лампы мощные

Обладают довольно широким спектром излучения и большим диапазоном мощности. По праву считаются идеальным вариантом для теплицы. Их свечение максимально приближенно к солнечному.

Только они не отличаются долговечностью, при большой стоимости. Часто встречаются ограничения по положению горения, и это не очень удобно для применения.

Светодиодные лампы для освещения

При помощи этой подсветки можно освещать растения лишь одним видом света, красным или синим, есть возможность и комбинировать свет. Они обладают высокой стоимостью, но незначительным потреблением электроэнергии.. Но именно на белые светодиоды возлагают надежды ученые в данное время. По ним и ведутся сейчас серьезные работы и исследования.

Первыми начали испытывать светодиодные лампы в теплицах в Дании. Используя 50 000 светодиодов, экономия составила порядка 40-ка процентов. При этом рост растений происходил более интенсивно. С применением таких ламп в теплицах промышленного типа стали меньше использовать химикаты, которые регулируют рост растений.

Монтаж светодиодных светильников выполняется традиционным способом, в линейных системах, которые монтируются при помощи гибкого троса. Так можно в нужное время регулировать ориентацию и высоту светильников.

Рекомендации

  • Растения поглощают только часть диапазона излучения света, волны которые имеют длину 400-700 нм. Но все таки следует учитывать, что ультрафиолетовое и инфракрасное излучение тоже влияет на рост растений в теплице.
  • Можно выделить два вида освещения: фотопериодическое и подсветка постоянного типа. Применение зависит от выращиваемых культур.
  • Лампы натриевые высокого давления, не являются идеальными для применения в теплице. Следует выбирать различные источники света, все зависит от типа выращиваемой культуры.
  • Не следует экономить на качестве оборудования для освещения, хорошее оборудование позволит обеспечить наилучшие условия и равномерное освещение растений.
  • При выполнении монтажа освещения следует соблюдать правила техники безопасности и пожарные нормы.

Освещение для парника практически такое же, как и для теплицы. Не пренебрегайте качеством осветительных приборов и урожай порадует вас.

Расчет светодиодных тепличных точек освещения

Чтобы рассчитать достаточное число светодиодных элементов освещения для теплицы, нужно учитывать следующие моменты:

  • световой поток осветительного прибора;
  • расстояние от источника света и выращиваемой растительностью;
  • расстояние между самими источниками освещения.

Для расчета потока света, нужного для полноценного развития растительности, которое в свою очередь осуществляется при рассеянном световом потоке, необходимо брать на 1 м2 площади теплицы 3 000 Лк.

Если освещенность лампы составляет 500 Лм, рассчитать освещение на 1 м2, когда расстояние от осветительного устройства до растения составляет 0.3 м, можно по следующей формуле.

Освещенность делим на расстояние и умножаем на значение требуемой освещенности лампы на 1 м2 = световой поток, где:

  • освещенность = 500/(0.3х0.3) = 5 555 Лк;
  • 500 — освещенность светодиодного источника;
  • 0.3 — расстояние по системе СИ;
  • 0.3 — значение нужной освещенности лампы на 1 м2 по системе СИ.

Учитывая 30 процентов потерь световой энергии в результате преодоления расстояния от светового источника до растения, приблизительное значение составит 3 890 Лк. Соответственно, на 1 м2 насаждений, предпочитающих рассеивающий свет, можно использовать один светодиодный источник мощностью 10 Вт.

Нормы и требования

Следует отметить, что все представители растительного мира по-разному реагируют на воздействие светового излучения. Также спектр излучения будет стимулировать различные функции у произрастающих культур, поэтому вам необходимо учитывать длину излучаемых волн, лежащих в ультрафиолетовом или инфракрасном спектре:

  • Ультрафиолетовый спектр от 300 до 400 нм – пригодиться для удаления вредоносных микроорганизмов из теплицы, но может использоваться исключительно в профилактических целях. Длительное воздействие окажется губительным для флоры.
  • Фиолетовый 400 – 430 нм – позволяет укрепить ствол и повысить устойчивость к внешним погодным факторам.
  • Синий спектр 440 – 460 нм – способствует росту как корневой системы, так и листьев, повышает фотосинтез выращиваемых в теплице культур.
  • Зеленый 500 – 600 нм – не несет практической пользы для обитателей теплицы, если установить только такие модели приборов освещения, может погибнуть весь урожай.
  • Желтый 600 – 620 нм – стимулирует вытягивание растений, что подходит далеко не всем культурам, к примеру, актуально для декоративных деревьев, кустарников и прочих. Но бесполезно для плодоносящих или цветущих.
  • Красный спектр 620 – 700 нм – под его воздействием стимулируется выработка углеводов и их дальнейшая транспортировка, что приводит к быстрому развитию плодов или цветоносов.
  • Инфракрасное излучение от 780 нм и более приводит к наращиванию температуры растений, что может погубить урожай в теплице.

Выбор конкретного спектра ламп для искусственного освещения производится в соответствии с сортом выращиваемой флоры и требуемого результата. На практике лампы освещения могут содержать сразу несколько спектров, что расширяет их функциональность. Но это относится далеко не ко всем устройствам освещения, поэтому необходимо внимательно изучить особенности влияния световых приборов на микроклимат теплицы и состояние ее обитателей.

Светильники с различными типами ламп: сравнительные характеристики

У металлогалогенных, люминесцентных и натриевых светильников КПД приближается к 70%, тогда как у светодиодных этот показатель составляет 95%.

По световой отдаче на сегодня лидируют LED-светильники и светильники с натриевыми лампами, светоотдача которых превышает 100 лм/Вт. Однако если ресурсы повышения светоотдачи натриевых ламп практически исчерпаны, то светоотдача светодиодных источников света повышается год от года.

Светодиодные светильники имеют самый продолжительный срок эксплуатации. Он приближается к сроку работы диодов — 50 000 часов. На втором месте натриевые лампы (16 000-24 000). Менее долговечны металлогалогенные аналоги (6 000-10 000).

Что касается недостатков, то у светодиодных светильников — это высокая стоимость; у светильников с натриевыми лампами — не оптимальный, в сравнении со светодиодами, спектр, с металлогалогенными — стоимость и относительно низкий срок службы.

Наглядное сравнение основных характеристик различных видов ламп показывает — светодиодные светильники для теплиц обладают весомыми преимуществами. Они превосходят традиционные лампы и при этом могут использоваться в пыльной и влажной среде.

Достоинства светодиодного освещения очевидны, но остается проблема выбора между самими LED-светильниками. На современном светотехническом рынке наблюдается острый дефицит качественной и надежной продукции, которая практически доказала свои преимущества перед традиционными лампами (прежде всего, перед лампами ДНаТ). Профессиональные тепличники знают — только практика позволяет подобрать светильники с оптимальным сочетанием спектрального состава излучения, мощности и энергопотребления.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector